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Summary. A model of the one-dimensional Coulomb-interacting few-particle sys- 
tem is studied in detail. The model is similar to a many-electron system which in 
a zero-order approximation of the non-interacting particles has only singly occu- 
pied one-electron levels. Such model cancels the divergencies in the Coulomb and 
exchange interaction energies found regularly for a conventional one-dimensional 
system which is built up of the doubly occupied one-electron levels and is submit- 
ted to the Coulomb perturbation. In the present case, the correlated wave functions 
for the system can be obtained from the Slater determinants constructed for the 
sets of the one-electron levels and combined according to the rules given by the 
standard perturbation theory. 

The calculations allow us to discuss the correlation influence and the effect of 
the size of the model on: (i) the excitation energies including the criterion corres- 
ponding to the metal-insulator transition (the Mott transition), (ii) the distribution 
of the correlated charge along the model, (iii) the average velocity of a two-particle 
system being in different states, and (iv) the dipole moments and transition 
probabilities. In the last case, the lifetime of the uncorrelated and correlated excited 
states obtained in the situation of the allowed one-photon transitions can be 
compared with the lifetime obtained for a similar system in the case when the 
one-photon transitions are forbidden and two-photon transitions should be taken 
into account. 

No data other than the length of the model and the fundamental constants of 
nature enter the calculations. 

Key words: One-dimensional model - Coulomb-correlated excitation energies 
- Coulomb-correlated particle density - Mott transitions - Dipole transition 
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1 Introduction 

The one-dimensional many-electron problem has its rich literature; see e.g. [1-21]. 
In many cases these investigations seemed to be rather academic because of the 
absence of their experimental counterparts. Historically, the sound-waves-like 
approach to the many-electron problem by Tomonaga, which was similar to 
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Bohm's idea of the plasma oscillations in the electron gas, seemed to be the first 
one-dimensional electron-electron interaction theory [-22-27]. Then came the 
spectroscopy of molecules having the conjugated double-bond systems for which 
also the free-electron model appeared suitable [28-36]. In the next step, the 
problem found its stimulus in the Little's prediction [37] of high-temperature 
superconductivity in the one-dimensional systems having the branched chains; 
cf. here also [38-44]. After that there came the effects of high conductivity in some 
long polymers (TTF-TCNQ compounds) which could be approximately con- 
sidered as the one-dimensional systems [45-56]. Recently, however, the electronic 
structure of quasi one-dimensional systems as realized in quasi one-dimensional 
quantum wires is under the experimental study [57, 58]. Also the one-dimensional 
quantum wells have been recently considered both experimentally and theoret- 
ically [59, 60]. This was possible with the increasing microelectronic fabrication 
techniques which enabled us to study a wide range of the physical phenomena 
concerning the electronic structures having the reduced dimensionality and 
a rather small electron number. These phenomena attracted much of interest in the 
past few years; see e.g. [61, 62]. The best known are probably the quantum Hall 
effect and the behavior of the low-dimensional systems in strong magnetic fields 
[63-66]. At the same time the accurate calculations of the many-body effects in 
the one-dimensional systems were lacking. This lack was most probably due to 
the divergencies which necessarily occur in the energy calculations done for 
the electron-electron interaction in the one-dimensional systems. Similar calcu- 
lations for any three-dimensional many-electron case are normally convergent. 
Nevertheless, with some allowances imposed on the parameters characteristic for 
the one-dimensional models, the electron-electron interaction calculations could 
be performed too, and, in particular, an important role of the exchange interactions 
in the one-dimensional systems was exhibited [61, 62]. 

The well-known idealization of a one-dimensional electron gas with Coulomb 
interactions is provided by the Luttinger model [67-69]. When generalized to 
describe spin-½ fermions the model is exactly soluble [68, 69]; it can be diagonalized 
in terms of a set of exact boson modes describing charge and spin-density waves 
[10, 70, 71]. The model can be completed by including the "backward scattering" 
(2 kv momentum transfer) processes in which particles on opposite sites of the 
Fermi surface can be exchanged [72]. A feature of such solution is that an exact 
decoupling of charge and spin degrees of freedom can occur. A mapping of the spin 
part of this "backward scattering" model was reported in [73]. The defects of the 
"backward scattering" model were pointed out in [74, 75], where in fact the 
lowest-order interactions between charge and spin density waves in a generalized 
model are obtained which included the "backward scattering" and did not need the 
cut-off parameter introduced in [10]; see also [76, 77]. The main idea was that the 
parameter limit is not required if a properly normal-order boson representation is 
constructed. 

The properties of organic metals and other highly conducting solids are far 
too complex to be understood by means of purely microscopic calculations. 
Usually it is assumed that the restriction to one-dimensional motion improves 
possibility of finding exact solutions of certain many-body problems [-78]. In real 
materials there are strong Coulomb repulsive forces, but it seems to be necessary to 
consider also the attractive potentials because they may well arise when electrons 
delocalize on large molecules (thereby reducing the Coulomb force) and attractive 
couplings are induced by molecular polarizability, or other collective effects 
1-78, 37-43]. 
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Solyom [79] gave a review of the theoretical approach to the one-dimensional 
conductors. Especially, he discussed the exact solutions known for particular val- 
ues of the coupling constants in a single one-dimensional system (Tomonaga- 
Luttinger model, Luther-Emery model [72]). Tomonaga simplified considerably 
the problem of the one-dimensional electron system with a long-range inter- 
action by linearizing the energy dispersion around the two Fermi points +_ kv. On 
the next step, the Luttinger model assumed an exactly linear dispersion. The both 
models show the same low-energy physics for long-range interaction with a rather 
weak restriction on the interaction strength [25, 80]. Also the one-dimensional 
Hubbard model, which is exactly solvable by the Bethe ansatz method [81], is 
similar to a Luttinger liquid for any coupling strength except for half-filling 
[82, 83]. In [72] it was realized, using the bosonized Hamiltonian, that for particu- 
lar values of the couplings the backward scattering problem can again be solved 
exactly. Electron-electron scattering and the transport relaxation time coming 
from that scattering were calculated in that region of temperatures where the 
kinetic equation can be used [84]. Moreover, it was demonstrated that the inter- 
action between electrons can give rise to an essential temperature dependence of 
the conductivity [79, 85]. 

Recently, high-resolution photoemission experiments were carried out [86] on 
one-dimensional organic conductors which exhibit an intriguing spectroscopic 
behavior; see also [87, 88] : in contrast to usual metals, the spectral function 
vanishes at the Fermi level and no Fermi edge is detectable. The peculiarities of 
correlated electrons in one dimension were examined theoretically in this context 
on the basis of the Tomonaga-Luttinger model [82,89]. Other theoretical ap- 
proaches to the one-dimensional systems rely on the exactly solvable one-dimen- 
sional 1/r-Hubbard model. Recently, it was found out that no kind of the wave 
functions obtained for this model (Hartree-Fock, Gutzwiller, Baeriswyl and com- 
bined Gutzwiller-Baeriswyl wave functions) can correctly reproduce the physics of 
the metal-to-insulator transition which occurs in this model [-90]. Other, rather 
recent, calculations on the Hubbard-like model and its cousin, the t - J model, are 
given in [91, 92]. Recent papers on the one-dimensional models directed towards 
their application to the molecular systems are [93-98]. 

In the present paper our point is that we can find and apply the model in which 
all conventional interactions in the electron gas, viz. the Coulomb, exchange and 
those responsible for the high-order correlation effects, can remain convergent 
also in the case when the model becomes strictly one-dimensional, i.e. when the 
cross-section radius R of the quantum-well wire tends to zero. This allows us for 
a considerable simplification of the calculations and, at the same time, enables one 
for the theoretical treatment of the effects which usually escaped from a careful 
examination. We assume our model is Coulomb interacting with half-filled spin- 
independent electron levels. Hence, it is within the perturbatively controlled re- 
gime; recently the validity of this regime for the electron gas was discussed by 
Anderson [99]. The first of the many-body effects which can be put under 
consideration are the well-known problems of the electron excitation and the hole 
creation in the Fermi few-particle system. We may ask, in the first step, how the 
electron correlation influences the excitation energy in dependence on the electron 
level position in the energy spectrum of that system and the size of the one-electron 
excitation energy itself. In the next step a question may arise, and can be solved, 
how the electron correlations influence the lifetime of the excited electron-hole 
pair. In this case the lifetime of two-photon transitions between dipole-forbidden 
levels can also be examined. This can be done for different states taken as the 
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intermediate states and a different size of the parameter characterizing the sample 
of the one-dimensional system which has its length L. Special conditions for the 
occurrence of the Mott transition in the correlated one-dimensional system are also 
investigated. This last point requires some explanation. In case of an uncorrelated 
electron gas we have an almost exactly uniform distribution of the electron charge 
along the length of the potential cylindrical well (potential box). At R ~ 0 this 
distribution leads usually to an infinite interaction energy of the gas enclosed in the 
potential well already in the first-order approximation of the perturbation theory. 
On the other hand, in the present model of the gas, we have a finite elec- 
tron-electron interaction energy also at R -~ 0 at any order of the perturbation 
theory. Apart from the radius R there exist also two other parameters characteriz- 
ing the gas model: the box length L and the electron number N. In the Mott 
transition we have a rapid change of the density distributed in a roughly discrete 
way about the individual atoms into a quasi-uniform density distribution extended 
throughout the volume of the crystal block. Our purpose is to examine to what 
extent the pattern of electron excitations characteristic for a metal can be changed, 
due to the electron correlation, into a pattern characteristic for an insulator, and 
how this change can depend on the model parameters L and N. 

Usually the answer of the questions stated above requires the application of 
a complicated many-body technique. In the present model the questions concern- 
ing the one-dimensional gas model can be approached in an almost analytic way 
developed on the basis of the conventional perturbation theory. 

2 The model 

The model applied in this paper is based on the assumption that all particle levels 
in the Coulomb-interacting gas can be only singly occupied. For example, the 
particles can be electrons having only one kind of spin. This means we exclude any 
double occupancy of the electron space orbitals. In effect, any unperturbed electron 
wave function of the gas can be represented by a single Slater determinant 
irrespective of the fact whether all one-electron levels of the gas are successively 
occupied beginning from the lowest occupied level (in this case we have a ground 
state of the gas), or there exist some, one or more, gaps in the occupation sequence 
of the levels (then we say the gas is in its excited state). The energy of any of such 
occupation patterns can be calculated in the zero-order approximation (the non- 
interacting, or the Fermi, energy of the system), then in the first-order approxima- 
tion (the first order, or the Hartree-Fock energy of the system), and finally, 
the interaction energy of any pattern can be calculated in the second, the third and 
the further orders of the Rayleigh-Schr~dinger (RS) perturbation theory leading to 
the successive approximations of the correlation energy of the system. Any correla- 
tion energy calculated in such a way is dependent on a given occupation pattern of 
the one-electron levels. To the best of our knowledge such kind of the calculations 
have never been performed before for a free-particle one-dimensional system 
composed of a finite number of particles. In the case where the system was 
a three-dimensional one and the particles were free electrons for which the spin 
degeneracy was allowed for, the correlation energy was approached in a former 
paper on the basis of the RS perturbation theory [100]. 

The main purpose of our simplifying assumption concerning the gas model 
presented at the beginning of this section was to avoid divergencies in the calcu- 
lations of the electron interaction energy when R -~ 0. But the assumption that 
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R -* 0 enables us also to calculate the matrix elements entering the perturbation 
formalism in a very simple form. 

The one-electron (zero-order) energy of the system of N electrons is a sum of 
one-electron eigenenergies which give 

h2 k2~2 h2 2 hz k2~2 h2 
E'°)=2me~k--~-- +~-~m~ ~Uol =~m~ k~--L- 7- +N2rnU2Ol; (1) 

the first sum in Eq. (1) represents the kinetic energy of the motion along the 
potential box having the length L, the second sum represents the kinetic energy of 
the motion transversal to L. The potential box has a cylindrical shape of radius 
R and infinite walls, so the one-electron wave functions can be represented in 
a standing-like form; see [101-105] and Eq. (3) below. The k in the sum runs over 
all occupied one-electron levels. The number 

u01 = 2.405 (R- 1) (2) 

is the first zero of the Bessel function Jo entering the radial part of the one-electron 
wave function which diagonalizes the kinetic energy operator: 

= No 1Jo(uo lr) sin (knz/L); (3) 

[Nol = 2.724(2r0-1/2R- 1]. For a very small R the number Uol can become so large 
that any excitation energy of the electron system coming from the change of k is 
smaller than the energy change 

h2 
- -  (u22 - Uo21) (4) 
2m~ 

coming from the one-electron excitation from the state represented by the first zero 
Uol of the Bessel function Jo in Eq. (3) to the state represented by the next zero 
Uo2 of the same function. In this situation all radial (and angular-dependent) 
parts of the free-electron wave functions other than those given in Eq. (3) can be 
neglected as leading to higher one-electron energies than those associated with the 
change of k. Hence, for all practical calculations of the excitation energies, we have 
the last term in Eq. (1) unchanged. Evidently, this term cancels in any calculation of 
the difference of two E (°) representing two patterns of the occupied one-electron 
levels, giving an expression dependent solely on k's. 

The first-order perturbation energy is represented by 

1 
F J "  = 2 2. - K,j), (5) 

J 

where 

Ju= ij i j ,  (6) 
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are, respectively, the conventional Coulomb and exchange integrals. The 
matrix elements present in Eqs. (6) and (7) are calculated according to the 
definition 

e 2 

(abel 2 cdl = fq)*a(rl)qg*(r2)~12 q)c(rl)qgd(r2)drl dr2 (8) 

suitable for any one-electron levels a, b, c, d. The double sum in Eq. (5) runs over all 
occupied levels of a given pattern of levels. Any of the integrals (6) and (7) calculated 
separately for any pair of the levels i and j diverges, but any component  of the 
sum given in Eq. (5), viz., J~j - Ko, converges [106]. This leads to a convergent 
Hartree-Fock energy of the gas. In the next step we have the second-order 
perturbation energy 

~-(o) ~ o ) ,  (9) 

where U~ is the matrix element of the Coulomb interaction between the Slater 
determinant representing the initial state v and the Slater determinant representing 
state 2. For  any 2 ~ v the matrix element 

i j # i \  t tj I / 

does not  vanish on condition that the Slater determinant ~ differs from a similar 
Slater determinant ~x only in the occupation of one or two one-electron levels 
[107]. In the first case, which is a one-electron excitation, let us assume that an 
electron which is in an occupied level a in the state ~ is promoted to an 
unoccupied level b creating some new state ~ .  Then 

U"x=~[tac e2 bc~-(ac[ er2T2 / (11) 

where the sum runs over all levels c which are occupied in both ~ and ~z, so that 
c ~ a and c ¢ b. On the next step, in the case when two electrons occupying 
originally the levels a, b in ~v are shifted to the originally empty levels c, d creating 
a new state ~ ,  which leads to a two-electron excitation, we have 

U~=(ablerT 2 cd)-(ab er-~2]dc ). (12) 

We find that, similar to Jij - K~j, expressions (11) and (12) converge also in the case 
of R ~ 0. For, we find that 

Irlz r12 / 
: l la -c l ,  l b - d  I - -  I la -c l , t ,+d  - -  I a + c , l b - d l  + I a + c , b + d  

- -  I i b - c l , l a - d  I + I I b - c l , a + d  + Ib+c ,  la-al - -  Ib+c,a+d (13) 
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where 

½ 1 ~ , , = I , , , = -  [ l + ( - 1 ) * + ' ] Z r t - *  

x {(s + t)- ' [Si(s=) + Si(trO] + (s - t)- '[Si(srO - Si(trt)]} (14) 

for any s :~ t; 

e 2 e 2 e 2 
It,, = - ~- (tr 0 -  'Si(t~) -- -~ In (rot) - -~ y; (15) 

e 2 
Io,o = -- 2~-  (16) 

y = 0.5772157 is the Euler constant. 
With the convergent expressions (11) and (12), it is easy to perform the 

programme outlined in Sect. 1. The energy differences entering the expression (9) 
for the perturbation energy are simply 

h2  ./~2 

AE(°) = (b2 - aZ) 2me L 2 (17) 

in the case of one-electron a ~ b excitations, and 

h2  ,~2 

AEt°) = (c2 + d2 - a2 - b2) 2m---~ L --5 (17a) 

in the case of two-electron a, b -~ c, d excitations, 

3 Electron excitation energy of the one-dimensional electron gas influenced 
by the electron correlations 

The first, rather fundamental, question which we like to answer here is the sequence 
of energy levels in the electron gas in the case when the Coulomb electron 
interaction is included. In the absence of this interaction the answer is rather 
simple: for a one-electron excitation from the level N to the level N + A, where 
A >/1, the excitation energy given by Eq. (17) is 

h 2 rC 2 

A ~'(°) = I-(N + A) 2 - -  N 2] 2mo L 2 ~ N - ~ N + A  (18) 

and this is a positive number for any A/> 1. A question may arise whether 
A,,(o) LN-~N+a > 0 holds also in the presence of the electron correlations. This question 
can be examined in dependence on the size of the parameters N, A, L, as well as the 
size of the charge e. In the first step we can examine the extension of Eq. (18) given 
in the Har t ree-Fock (HF) approximation. Thus, 

, ,F A~(1) (19) AEN-,N+A = AE~N+A + o~N~N+A, 

where 

Aw(') E(1)(N + A) - E(')(N) L , N ~ N +  A ~- 

= 2 (JN+A,j -- KN+A,j  -- JN,j + KN, i); (20) 
j = 1 , 2 , 3  . . . . .  N - 1  
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the differences J N + A , j  - -  K N + A , j  and Jn ,  i - -  KN, j can be readily calculated for a n y j  
by Eq. (13). 

In the second step, the problem can be examined in terms of the second-order 
perturbation theory: 

Ar(rlF . . . .  ) A 17(HF) -(2) . -- E~). (21) 
. t~N- . . ,N+ A ~ z a J . a N . - . N +  A -t- L N +  A 

Here we have 

v IUN~I~ ~ 2 )  _(2) I (22) E}~) = z., L.(o) ~(o) = J-~N, lel -t- / ~ N ,  2e  
). J"~N - -  J-~2 

,~(2) . The part of the sum (22) corresponding to and a similar expression holds for ~N+ A- 
the case of the one-electron excitations becomes 

E(2) L ~ { c ~ [  ( e 2  2 ) (  e2 ) ] } 2  N, lel ~ ac Mc -- ac ~ cM 
a = l  

I- h 2 n 2 ] -  1. 
x |~----77 ( a2 -- M2) (23) 

LZme L 

Here a, c = 1, 2, . . . ,  N, c # a and M = N + 1, N + 2, . . . .  The remaining part of 
Eq. (22) which corresponds to the two-electron excitations is 

a b c d L \  I 1 2  \ [ r 1 2  

I- h 2 n 2 1-1 
X L~-~m~-~(a2 + b 2 - c 2 - d  2)J ; (24) 

wherea, b = 1,2, . . . , N , b  ~ a, and c , d = N  + 1, N + 2 ,  . . . , c  ~ d. 
The expressions (23) and (24) also hold for the corresponding terms of 

E ( 2 )  , IU(2) r 7 ( 2 )  . , 1 (25) 
N + A  ~ J : ' N + A ,  l e l  -[- 1 2 ~ N + A , z . e  • 

E(2) . is given by the expression (23) for a, c = 1, 2, N -- 1, N + A, c ~ a N + A ,  l e l  " ' "  ~ 

and M = N , N + I ,  . . . , N + A - 1 ,  N + A + I , N + A + 2 ,  . . . .  On the other 
hand E(~)+A,z~1 can be calculated using (24) for a, b = 1, 2, . . . ,  N - 1, N + A, a ¢ b 
andc, d =  N , N  + l, . . . , N  + A - 1 ,  N + A + I , N  + A + 2, . . . , c  C d .  InFig.  1 
we plot the contributions to the total energy per electron minus (hZ/2mo)u21 
[see Eq. (i)] calculated for systems having N ~> 2, versus N; Fig. 2a represents 
the contributions to excitation energies for N = 2 system calculated for 
different approximations. In Table 1 the excitation energies for N = 5 system are 
given. 

3.1 Comparison with the excitation energies of two-spin one-dimensional 
system. V irial theorem 

The excitation energies of Sect. 3 obtained in the case of one-spin particles filling 
the one-electron levels can be compared, to some extent, with similar excitation 
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Fig. la,b. Energy contribution (in eV) calculated per one particle [minus ( h Z / 2 m ~ )  u ~ l  - see Eq. (1)] 
for N-particle Coulomb-interacting one-dimensional systems plotted vs, N ; L  = 10 -9 m. (a) energy 
E (°) - triangles; energy E m - squares. The sum E (°) + E m gives the Hartree-Fock energy per one 
particle (b) Energy E~2~ - circles; energy E~Z]~ - triangles. Energy E (z) - represented by squares is the sum 
Ei2~ ', + E~2~', 

energies of the model in which the one-electron levels are doubly occupied 
by electron particles having two opposite spins. This last model can represent 
a real many-electron system. The divergencies in the Coulomb and ex- 
change interaction energies obtained usually in this case for the situation of 
R ~ 0 can be avoided on condition that  all electron levels are doubly occupied 
and in the course of an excitation the electron pair occupying originally some 
level a is excited to some level b. Then the excitation energy of one electron 
from a to b calculated in the framework of the model given in Sect. 3 can be 
compared  with a half of the excitation energy of electron pair promoted  from 
a to b calculated in a two-spin model. The zero-order excitation energy AE (°), 
when taken per one electron, is evidently the same for both kinds of models, 
so we focus our attention on the electron interaction contribution AE (1) 
to the excitation energy. For  the model of Sect. 3 this energy contribution 
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Fig. 2a. Contr ibut ions (in eV) to the excitation energy of states { 1, n} of 2-particle one-dimensional  
system plotted vs. index n of the excitation level; L = 10 -9  m. The excitation energy is the energy 
difference between { t, n} and { 1, 2}. Energy AE (°) - circles; AE m - triangles; AE]2]t - squares; A E  (z~ 

= E (2) ~ E ~z> - rhombs; crosses represent a negative difference between the electron-core interaction l e l  + 2e l  

energy in { 1, n} and  { 1, 2} 
Fig. 2b. A E  m is compared with A E  ~t) which is a half of the electron interaction contribution to the 
excitation energy of a real (two-spin) system obtained in the case when both levels t and 2 are occupied 
by electron pairs in the system in its ground state and the pair located originally on level 2 is excited to 
level n; see Sect. 3.1. Upper  line: A E  (1) vs. n; lower line: A E  (l) vs. n 

is given in Eq. (20), whereas in a two-spin model a half of this energy contribu- 
tion is 

--(1) 
A E N - , N + A  = ~ ,  (2JN+ A,j -- 2JN, j -- KN+ A,j + KN, j) 

j = 1 , 2 , 3  . . . .  , N - 1  

1 
+ "~ ( J N + A , N + A  - -  JN,  N), (26)  
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Table 1. Contributions to the excitation energy (in eV) of 
a 5-particle system calculated for different L (in 10- lo m) 
coming from different approximations of the perturba- 
tion theory. 

L = I  L = I O  

Exc i t ed  s tate  { 1, 2, 3, 4, 6} 
A E  ~°) 4.14 x 102 4.14 
A E  t~) 2.46 x i0 2.46 
A ~;(2) 1,07 x 10- '  1.07 X 10 -1  aa l  el 

ZI ~'(z) --  9.22 x 10- x - 9.22 x 10- J~2el 

A E  ~v~°~O 4.16 x 10 z 5.79 
A E  ~(~ - 1.16 - 1.2x 10 -~ 
A E  ~(2) 0,43 x 10 -z 0.43 X 10 - 2  

Exc i t ed  s ta te  {t, 2, 3,4,15} 
A E  ~°) 7.52 x 103 7.52 x 10 
A E  ~t) 1.39 X 10 2 1.39 x 10 
AE~2~I 3.37 x 10 -1 3.37 x 10 -1 
d ~  2) ~2,J - 2.36 x 10 -1 - 2.36x 10 -z 
A E  ~nv~°m 7.66 X 10 3 8.92 x 10 
A E  ~m - 4.67 - 4.7 x 10 -a 
A E  ~(z) - 1.5 x 10 -~ -- 1.5 x 10 -~ 

State {1, 2,3,4, 5} is the ground state. First row: A E  w) 

- zero-order perturbation energy; second row: A E  m 

- first-order correction to the Coulomb perturbation 
energy; third row: AEt21 - the second-order correction to 
the Coulomb perturbation energy obtained for the one- 
particle excitations; fourth row: AE~2~{ - the second-order 
correction to the Coulomb perturbation energy obtained 
for the two-particle excitations; the fifth row is the 

.~(1) ~(2) total of A E  (°) + A E  m + ,~,~to~ + AL2el represented by 
AE (nF~°m. The sixth and seventh row are the electron- 
core interaction energies calculated in the first and the 
second order of the perturbation theory, respectively 
(see Sect. 3) 

h e r e  t h e  e l e c t r o n  p a i r  is p r o m o t e d  f r o m  t h e  t o p  o c c u p i e d  level  N to  t h e  level  
N + A. F o r  t h e  c a s e  w h e n  N = 2 a n d  A = 1, 2, . . . ,  28 t h e  ~'-,N-~N+~A~(1) g i v e n  in  

Eq .  (26) is c o m p a r e d  w i t h  O~'N-~N+AAe(1) f r o m  Eq.  (20) in  Fig .  2b.  W e  f i nd  t h a t  

A~(1)  for  a n y  A ~> 1. H o w e v e r ,  t h e  r a t i o  z3L, N , N +  is s m a l l e r  t h a n  zJL, N ~ N +  A 
A~(1) ~ /A~(1)  

( A E ~ ) - . u + a  - -  ~ r , N - * N + a l / ~ N - ~ N + a  d e c r e a s e s  w i t h  t h e  i n c r e a s e  o f  A a n d  d o e s  n o t  
e x c e e d  4 0 %  for  s m a l l  A. 

I t  s e e m s  o f  i n t e r e s t  to  e x a m i n e  a l so  t h e  v i r i a l  t h e o r e m  in  o u r  m o d e l .  F o r  t h r e e  
d i m e n s i o n s  t h i s  t h e o r e m  s t a t e s  t h a t  [108,  109-1 

2Ekl ,  + Epot = # P V ,  (27) 

w h e r e  

6~(Ekin + EpoO 
P = c3V (28) 
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is the electron gas pressure at the boundary of the electron gas volume V and 
# = / t  (3) = 3. For a one-dimensional electron gas enclosed in a cylindrical potential 
box of volume V = nR2L we assume that the radius R of the box remains 
unchanged, so that 

0(Ekin + Epot) 
P = (29) lzR2aL 

In our model we have 

A B 
Ekln = E (°) = - -  Er, ot = E (1) = -- (30) 

L 2' L '  

where A and B are independent of the box length L. Thus, we obtain 

0(Eki, + Epot) L = PV. (3t) 
2Ekin + Epot = c~ L 

In effect, Eq. (27) is satisfied also for one dimension on condition that p =/~(') = 1 
and Epot is limited to E(~); the inclusion of E (2) into Epot cancels the equality given 
in Eq. (31). 

3.2 The positive background and its influence 

We assume the Coulomb-interacting particles in the box have a negative charge, 
so, in order to neutralize it, a positive background distributed uniformly within the 
box volume should be taken into account. If Z positive elementary charges fill 
uniformly a cylindrical box volume neutralizing Z electrons present within the box, 
the density of the positive charge is 

ep(+) = Ze(nR2L) - 1, (32) 

so that the Coulomb potential energy of the interaction with one electron charge 
given by state (3) is 

E~(1 ) -- _ ZeZ(~RZL)_ 1 ~ ( q)*(r)q)k(r) j j  ~ dr+ dr; (33) 

here the variable r+ refers to a volume element of the positive background; the 
integrals over r and r+ are extended over the box volume. A difficulty in the 
calculation of Eq. (33) is that the integral entering Eq. (33) diverges at R ~ 0. 
Fortunately, we can calculate a convergent difference at R--* 0 between two 
first-order electron-core interaction energies (33) for two different electron states, 
say k = a and k = b. We obtain 

A~e(1) Z(Io,2b -- I0, 2a)" (34) 

The second-order perturbation energy expression for the core interaction with an 
electron at the electron level k is equal to 

AE~ (2, = ~ k l (  k ~ Ira>IT- [~-~m~ n 2 Z e 2  hZ -£5 ( k2 - m 2 ) l  - t ,  (35) 
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where 

t Ze z 

is a convergent result. Hence, also Eq. (35) converges since m ¢ k. 
In Table 1 we present the data obtained with the aid of the formulae (34) 

and (35). 

3.3 Accuracy of the perturbation calculation 

The perturbation method applied in the present paper is typical for the 
Rayleigh-SchriSdinger (RS) theory and we may compare its accuracy with a more 
sophisticated approach in which at least a part of perturbation energies of the 
infinite order is included in the first few perturbation terms. Such a method applies 
shifted-energy denominators in which the perturbation energy of a lower order, e.g. 
that given by the Coulomb interactions, enters the energy denominators; see [110] 
and cf. also [111-1. The RS perturbation series is obtained when the shifted-energy 
denominators are expanded as the power series of the perturbation parameter 
[110]. The accuracy of both methods, viz. the RS method and that having 
shifted-energy denominators, can be compared for different perturbation orders by 
solving numerically the L6wdin's equations [112], viz. 

0 = - e + E,(, °) + E(. 1) + L ~ _  ~-6o) (37) 
p P 

for the first perturbation order, 

o = - e + E + E':, + ,,E + e -(-e E~ o~) 
P q ", 

for the second perturbation order, 

(37a) 

- "  E~ ) ( e -  Ea ) p p ( g _  ~ - - - -  (o) 

+ 
y~ y~ y~ 

z~z-(e - E(~ °') (e - e~ °') (~ - E?~) p q r 

for the third perturbation order, and 

(37b) 

U.,U,,V, rUr. + y. xj, y~ 
~ ' = ( e  - Eye)  ( g  - E~ °~) (g  - E?~) 
p q r 

u.pupqu~,ur~u~. + 
z - ' ~ = ~ e  - Eye)  ( g  - e ~  °,) ( e  - E?~) ( e  - e ? ~ )  p q r s 

(37c) 
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which is the equation for the fourth order of the perturbation, etc. The solutions for 
C obtained from Eqs. (37)-(37c) are compared with: 

(i) the RS perturbed energies, viz. E Rm), E Rs(2), E Rs(3), E Rs(z), E Rs(4) of state 
n calculated up to the first, second, third and fourth perturbation order of the RS 
theory correspondingly (see e.g. [113]); 

(ii) the modified perturbed energies [110] which for the perturbation orders 
1 and 2 are identical with E Rs(1) and E Rs(2) but for the perturbation order 3 read 

E (3) = E~ °) + E(. 1) + E(. 2) 

v.y.qVq. 
+ 2 2 , e ' ° '  + °') , , ,  . + - Eye)  (E(, °~ E~.'- ' 

(38) 

and for the perturbation order 4 read 

E (4) = E(. °) + E(. 1) + E(. 2) 

v.,v,.u.. 
+ ZZ~e(°~ + e(." + ~(" - E(, °') (e(. °' + e~." - ~(~' - e ,  (°)) p q '~ n ~ n  ~ n  

u.~u~,u,.u~. 
+ Z E Z m , o ~ .  . , . _* E , ,  _ E~o)) (E~. o, + ~.F(') - E~o,) (ET~ + E~." -- E~°')" 

(38a) 

The expressions in Eqs. (38) and (38a) are obviously different from E Rs(3) and ERS(4); 

moreover E Rs(1) = E(. °) + E(. 1) and E Rs(2) = E(. °) + E~. 1) + E(. 2). For  the further per- 
turbation orders, viz., a > 4, the terms E ("- 2), E(a-3), ... enter the denominators of 
the terms representing E (") [110]. In Table 2 we compare the accuracy of E Rs(3) and 
E Rs(4) with that of E (3) and E (4) by substituting, respectively, 

----- E Rs(3) ,  E Rs (4 )  (39) 

and 

g = E (3), E (*) (39a) 

into the third-order equation (37b) and the fourth-order equation (37c). For  a 
smaller L the perturbation procedure is, in general, better justified than for a 
larger L. We find in this case that 

IAERS(a) I < IAE(a) I (40) 

both for a = 3 and a = 4 which implies a better accuracy of the RS series than the 
series having the perturbation energies in denominators. 

4 One-dimensional gas modified by the Coulomb correlations 

A well-known result for the uncorrelated density of the electron gas is that it is 
practically constant except for the area which is very close to the gas boundary. 
This holds, of course, also in the case of the one-dimensional gas; see e.g. [114]. 
Our purpose is to examine whether this result can be modified by the Coulomb 
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Table 2. Comparison of the accuracy of the perturbation 
energy obtained from the RS perturbation series and a modi- 
fied perturbation series having the lower-order perturbation 
terms in denominators [110]. 

Perturbation order 1 

L E Rs(1) = E ~1) AE  Rs(l~ = d E  °)  

10 -1° 2.359308452 x t02 - 1.90 
10 - l j  1.928065701 x 104 - 1.68 

Perturbat ion order 2 

L E Rst2) = E ~2~ AE Rs(2) = A E  ~2) 

10-lo 2.342727841 x 102 2.09 x 10-1 
10 -11 1.927899895 x 10* 1.38 x 10 -2 

Perturbation order 3 

L E Rs(3) A E  Rs(3~ 

10 -1° 2.344040688 x 102 - 2.89 x 10 -2 
10-11 1.927901208 x 104 - 9.97 x 10-5 

L E (3) AE (3) 

10 - I °  2.343680596 x 102 7.25 x 10 -a 
10 -11 1.927901177 × 104 2.t0 x 10 -4 

Perturbation order 4 

L E Rs~4~ A E  Rs(4~ 

10 -1° 2.343956148 x 102 5.35 x 10 -3 
10 -11 1.927901199 x 104 6.21 × 10 -7 

L E ~4) AE  ~4) 

10-lo 2.344155964 x 102 - 1.47 x 10 -2 
10 -11 1.92790120t x 104 - 1.55 x 10 -5 

The third and the fourth perturbation orders are examined 
for the Coulomb interaction between an electron pair taken 
as a perturbation: A E  Rs are the numbers obtained for the 
right-hand side of Eqs. (37b) and (37c) when E Rs~3~ and 
E Rs(4~ are substituted, respectively, for ~, whereas AE are the 
numbers obtained for the right-hand side of Eqs. (37b) and 
(37c) when E 13) and E {4} from Eqs. (38) and (38a) are sub- 
stituted, respectively, l:or g. For the sake of comparison the 
A E  equal to the right-hand side of Eqs. (37) and (37a) in the 
case when the lower-order energies E Rs(1) = E  (1) and 
E Rs~2~ = E ~2) are substituted for d ° are also given. L is the box 
length (in In); all energies are in eV 
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correlations. In other words our question is whether for a given particle number 
N and the elementary charge e one can find such L that the originally uniform 
electron density in the gas can be expected to be considerably disturbed. In 
this search we are guided by the Wigner's result for a distance characteristic 
for the electron lattice obtained in the three-dimensional gas at very low densities 
as well as the existence of the Mott  transition between a metallic and a non-metallic 
state. 

A measure of the correlation influence on the electron distribution can be 
represented by the change of the normalization coefficient of the perturbed wave 
function. For  example, let us consider the wave function }N) of the ground state of 
the gas; the change of the normalization coefficient of IN) is given by the inter- 
action elements between IN) and all possible excited states IM) of the gas. If we 
assume that all unperturbed detenninantal wave functions are normalized to 1, 
then the change of the normalization coefficient of IN) expressed in terms of the 
second-order perturbation theory is given by the formula 

2 
V LU--Nu [--- ~ • (41 ) d (2) - (N~°rrlNc°rr) -- 1 = ~lv(o)  ~,(0)~,2 ' 
M~,~taN --*aM! 

[M) ¢ IN) (see e.g. [115]). This formula can be considerably simplified if we note 
that the matrix elements UUM vanish when IM) and IN) ditt~r in the occupation 
number of more than two one-electron levels. If IN) and IM) differ in the 
occupation of only one electron level then the corresponding term in Eq. (41) can be 
calculated according to Eq. (11); if IN) and tM) differ in the occupation of two 
levels, UNU is given by Eq. (12). In effect, the sum (41) can be separated into two 
parts coming from the one-electron and two-electron excitations, similarly to the 
energy expressions given above. 

Let us represent formally a contribution to A (z) in Eq. (41) coming from the level 
i by 

A!2) a (2 )  _lA(2) (42) 
--~ z~i, le 1 + 2zai, 2el~ 

where again we have the terms coming from the one-electron and two-electron 
excitations; 

A (2) = ~ AI a). (42a) 
i 

The factor ½ in the last term in (42) takes into account the fact that only a half of the 
a 2 ) .  should be attributed to the level i and the remainder to the contributions ai, 2~, 

other levels, i.e. 1,2, . . . ,  i - 1, i + 1 . . . .  , N. We can be interested, for example, in 
a contribution to the correlation change AI 2) given by the lowest electron level 
represented by q~l(r) [see Eq. (3) i = k = 1]. If N subsequent levels i = 1, 2, . . . ,  N 
in the ground state are singly occupied by N electrons then 

e 2 2 h2  n 2  ~I2"]} -2 (43) . ( 2 )  
Z l l , l e  = ~ { ~ [ ( 1 c  r~2 [Mc)--(lc ~ cM)l } {~-~m~- 5 [ -12-  , 

A(12'~e'=2 b c d L\ I 12 

F h 2  ~2 1 - 2  x I -~--T--~ (a e + b e --c 2 --d z) (44) 
LZme -~ 
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Table 3. Cou lomb  correlations A~,Z~c, and A! 2) calculated for indi- 
vidual levels of  the 5-particle system and their sum A (2) [Eqs.  

(43)--(45)]; the total core-correlated A(~, [Eq. (45)] 

(2 A}2) A(2) Zli, tel ~cor¢ 

Ground state: { 1, 2, 3, 4, 5} 
i = 1 2.66 x 10-1 5.47 x 10- a 
i = 2 3.29 3.86 
i = 3 3.45 4.61 
i = 4 5.00 × 10 5.24 × 10 
i = 5 1.04x 10 1.27 x t0 
A (2) 6.74 x 10 7.41 x 10 

Excited state: { 1,2, 3, 4, 6} 
i =  1 2.21 2.67 
i = 2 1.25 x 10 -1 9.62× 10 -1 

i = 3 5.77 x 10 5.94 x 10 
i = 4 3.67 1.13 × 10 
i = 6 9.99 1.87 × 10 
A (2) 7.37 x 10 9.30 x 10 

Excited state: { 1, 2, 3, 4, 15) 
i = 1 2.32 3.17 
i = 2 3.37 5.39 
i = 3 6.25 x 10 7.09 x 10 
i = 4 130 x 10 2.79 x 10 
i = 15 9.06 2.87 x 10 
A (2) 9.03 x 10 1.36 × 102 

6.19 × 10 -4  

6.79 x 10 -4  

9.24 × 10-4 

Compar i son  between the levels of  the g round  and excited states; 
index i labels the levels occupied in the system; L = 1 0 - 8 m  

Here c = 2 , 3  . . . .  , N  and M = N + I , N + 2 ,  ... for expression (43), where- 
as a = l , b = 2 , 3 , . . . , N  and c , d = N + l , N + 2 , . . . , c C d  for expression 
(44). 

In the same way we can calculate Eq. (42) for all other i, viz., i ¢ 1, in the case of 
the gas being in its ground state. But the same problem can be also stated when the 
gas is in an excited state represented, for example, by a shift of one electron from 
the level N to some level N + A. If we focus our attention on a one-electron level i, 
this calculation enables us to examine how strongly some one-electron excitation 
N ~ N + A can influence the electron distribution ¢P*cPi. In Table 3 we represent 
A[,z~, and A} 2) calculated for different i's and different states of a five-particle 
system. 

A separate problem is polarization of the electron charge density by a uniform 
positive core; see Sect. 3.2. In this case, instead of Eq. (41) we have 

I r T eorel 2 
A(2) < N O O r e l N  . . . .  > ~'~ [ ~ N M [  
Jc or o  = - -  1 = ~ ¢ ~ , ( o )  w ( o ) x z ,  

M I,/--:'N - -  2-~M ] 

(45) 

where U ~  e is equal to the matrix element given in Eq. (36) on condition we put 
k = N • (2) . and m = M. The data obtained for A ....  are hsted in Table 3. 
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5 L6wdin-Tomonaga expression for the correlation between particle positions 

In Sect. 4 we proposed a global insight into the correlation between particles via 
the calculation of the change of the normalization coefficient of the correlated wave 
function. For a small number of particles, say 2, we can examine also the local 
change of the particle density due to correlation by drawing the patterns of equal 
probability density in the two-dimensional space of zl and z2. These patterns 
calculated for the correlated two-particle wave function can be compared with 
a similar pattern of the density given by the wave function correlated only 
according to the Pauli principle, viz. 

1 
p~(z ~, z~) = -~ 

(ZiVl:. ) slnt-c z')' 

) s,ntT 

) s niz-z') 

) slnt-L--z2) 

; (46) 

see Figs. 3 and 4. These density patterns are similar to those given a long time ago 
by Slater et at. [116] for a two-particle one-dimensional problem. An interesting 
presentation of the influence of the Coulomb correlation on the particle density can 
be done following Ref. [117]. 

For the ground state {1, 2} of the two-particle system in which two lowest levels 
1, 2 are occupied, the Coulomb correlated wave function 0{ 1, 2} can be represented 
by the sum of the Pauli-correlated part Om){l, 2} and the perturbation parts 
coming from the one-electron and two-electron excitations, viz., 

0{1, 2} = 0(°){1, 2} + 0(11~)I{1, 2} + ~(21~)i{ 1, 2}, (47) 

where 

1 
Ifl(°){ 1, 2} --= 7 I~o l(rl) (p2(r2) - q~z(r 1) (P 1 (r2) 1 , (47a) 

a part coming from the one-electron excitations is 

e 2 

Vhe g2 _M2)1-1 (O){N,M}, x L-~m ~ --£g (N z (47b) 

and a part coming from the two-electron excitations is 

r ~'I2 "1"~2 "12 2 z M z M'2)J - x~/°){M, M'}, (47c) 
×LgA-;m Vt + - _ 
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Fig. 3 and 4. Maps of the 2-particle Coulomb-correlated density LlO{m, n}l z (Figs. 3a and 4a) and Pauli 
correlated (Coulomb uncorrelated) density Ll~k(°){m, n}] z (Figs. 3b and 4t)) plotted vs. L-  lzl and L-  lz2 
for different states {m, n}; L is taken equal to 5 x 10- i0 m. The wave function 4'{m, n} is the Coulomb- 
correlated wave function for the state {m, n}, whereas Om){m, n} is the Patti-correlated (Coulomb 
tmcorrelated) wave function for the state {m, n}; integers m, n label the occupied levels. Figs. 3a,b - state 
{i, 2}; Figs. 4a,b - state {3, 4} 

(M, M '  > 2, M 4= M').  In  the  cur ly  b racke t s  we have  the level symbols ;  for  N = 1 we 
have  a c o m m o n  index c = 2 in the  g round  s ta te  IN)  and  the exci ted s tates  IM) 
( t rans i t ions  N = 1 -* M > 2), whereas  c = 1 for t rans i t ions  f rom N = 2 ~ M > 2. 
F r o m  any  two-par t i c l e  wave funct ion O(zl, z2) we can ob ta in  the  one-par t i c le  
dens i ty  o p e r a t o r  [117]: 

.I [ ~l(Zt, Z2)l z dz2 (48) p l (z l )  

by  in tegra t ing  over  the var iab le  zz. The  C o u l o m b  cor re la ted  and  C o u l o m b  uncor -  
re la ted  one-par t i c le  dens i ty  ob t a ined  accord ing  to Eq. (48) is c o m p a r e d  for different  
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Figs. 5 and 6. The one-particle density Lpl(zl) obtained from the Coulomb-correlated wave functions 
~{m, n} (dashed curves), core-correlated wave functions (dashed-dot curves), and the Coulomb-and- 
core uncorrelated (Pauli-correlated) wave functions ¢<°){m, n) (continuous curves) for different states 
{m, n}; see Eq. (48). The integers m, n label the occupied levels. Fig. 5 - state {1, 2}, Fig. 6 - state {3, 4} 

states in Figs. 5 and 6. The two-particle probability density for the wave function 
¢(zl, z2) is equal to the diagonal two-particle density matrix [1 t8]: 

p2(zl, z2) = [~k(Zl, z2)[ 2. (49) 

This density matrix is defined as the density of probability (in the two-dimensional 
space of zl and z2) that the first electron is at Zl, while the other is at Zz; the term 
if(z1, z2) can be either the Pauli correlated or Coulomb correlated wave function. 
Thus the average density of probability that two particles are at distance ~ is 
given by 

;;o fo C12(~) m~ dZl  dg2 p2(z1, z2) = dZl i l / / (Zl ,  z1 + 4)12. 
<~ Z 1 <~ L ,  O <~ g2 <~ L , z 2  = zI  + ~ 

(50) 
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Figs. 7 and 8. Density integral performed along the line parallel to the diagonal line zl = z2 
for the Coulomb correlated (dashed curve) and Coulomb uncorrelated (continuous curve) 
2-particle density; see (50). The density 2LC12(0 is plotted as a function of  the L - i ~  where ¢ is the 
distance of the integration line from the diagonal zl = z2. Fig. 7 - state {1, 2}, Fig. 8 - state {3, 4}. 
L = 5 × 1 0 - 1 o  m 

In Figs. 7 and 8 we represent the Pauli correlated and the Coulomb correlated 
C12(~). It can be easily checked that in any case the probability density C12(~) 
fulfills the required relation 

f L C12(~)d~ = (5t) 1. 
- L  

Let us also note that C12(~) vanishes at ~ = O, which is an expected result due to the 
asymmetry of any wave function ~(zl, z2). 

In Fig. 9 we compare the correlated and uncorrelated density of the five-particle 
problem. The correlated density is obtained from the formula 
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Fig. 9. The Coulomb-correlated density Lpl(z) (dashed curve) and core-correlated density (dashed-dot 
curve) of 5-particle system [see Eq. (52)] compared with uncorrelated density Lp~°)(zO of the same 
system (continuous) 

where ~P(zl, z2, . . . ,  zs) is calculated according to expression similar to that given in 
Eq. (47); the uncorrelated density p(l°)(zl) is obtained from Eq. (52) in the same way 
with ~k(°)(zl, zz, . . . ,  zs) substituted instead of O(zl ,  zz, . . . ,  zs). 

6 Metal - insulator  transition in a Coulomb-interacting one-dimensional  sys tem 

It is usually assumed that the change of a many-particle state, termed the Mott  
transition, occurs when a conduction electron of the metal forms a bound state 
with an ion in the lattice. In the case of a one-dimensional one-band model the 
absence of the Mott  transition in an exact solution of the short-range interaction 
problem is pointed out in Ref. [81]. In our case of the long-range Coulomb 
interaction we demonstrate the behavior of the system similar to that characteristic 
for the Mott  transition by examining the system's excitation energies. 

We have the zero-order, or unperturbed, excitation energy A E  (°) of a system 
proportional to L -2, the first-order perturbation energy due to the Coulomb 
repulsion proportional to L-x,  which together with A E  (°) gives the H F  excitation 
energy, whereas the second-order perturbation energy due to the same repulsion, 
viz. E t2), gives a contribution A E  t2) represented by a term independent of L. 
Neglecting high-order terms AE (3), AE(4) . . .  we can consider the total excitation 
energy 

A E  = A E  (°) + A E  (1) + A E  (2). (53) 

In a metallic system a usually expected situation is that 

A E  = E(~.c~ -- E(,,b) > 0 (54) 

for the case of c > b. Here the indices {a, c} label an excited state of a two-particle 
system, whereas {a, b} label the ground state of such system. In fact, to zero-order 
approximation we have as a rule 

E(O) ~ (o) (55) {a,c} -- ~{~,b} > 0 
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for c > b. The situation (55) holds for an arbitrary L, whereas our point is that for 
low excited states in Eq. (54) this situation should be limited to a certain interval of 
a rather small L. 

For  a bound electron system, say a hydrogen atom, the kinetic energy 
T', of such system increases with decreasing index n of the quantum level 
because of a stronger limitation of the space occupied by the electron at lower n, 
hence 

A T',,n = T',, - Tn < 0 (56) 

for n' > n. On the other hand, for the total energy E we have 

e 2 e 2 
E,, = - ~ n -  2, En, = -- - -  n' - 2, (57) 

2ao 2ao 

where ao is the Bohr radius, so the total energy change is 

AE',,', = E n, - E', :> 0 (58) 

for n ' > n .  Hence the sign of AT, , , ,  I-see Eq. (56)] is opposite to that of AEn, ,  in 
Eq. (58). Assuming that such situation is typical for a bound system we seek, in our 
model, such parameter L = Lc which makes the sign of A E  given in Eq. (54) 
opposite to the sign of 

A T = A E  ~°) (59) 

where A E  <°) is the expression represented in Eq. (55). 
In Table 4 we show the L~ calculated for several states {a, c} and {a, b} for 

which c > b. 

7 Dipole transitions and the lifetime of the excited states in a 
one-dimensional system 

Let us assume that an electron is promoted from the level N to some level 
N + A. There exists certain probability of a spontaneous transition back 
from N + A to N. The transition is accompanied by an emission of a quantum of 
energy 

hCON+A,N = EN+A -- EN.  (60) 

In Sect. 3 we presented the way of calculating the effect of the electron correlations 
upon hcoN+a,N. The natural breadth F of the emitted line, or its reciprocal value 
1IF equal to the lifetime of the excited state, can be calculated from the relation 
1-1153: 

4033 e 2 [ (  =~1 ) 2 4 3  e2 
= zl N ~C0N+a,N~-gC3 I(q)N+AIZI(pN)t 2, F ~ N+a,N~C3 N +  A i = 

(61) 

where q~N+a and q~N are one-electron wave functions; for the last step in Eq. (61) 
see Eq. (65) below. Usually the Pauli correlated, but Coulomb uncorrelated wave 
functions of the kind represented in Eq. (61) are applied in the calculation of 
F because of an enormous difficulty of the calculation of their correlated 
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Table 4. Box lengths L~ and Lc~ giving the metal-insula- 
tor transit ion for the excited 2, 3 and 4-particle systems 

e.s. L~ Lo~ 

Two-particle .systems; ground state: {1, 2} 
{ 1, 3) 6.42 × t0 -7  5.55 x 10-7 
{1,4} 5.62 × 10 -6  4,73 x 10 -6  

Three-particle ,systems; ground state: { 1, 2, 3} 
{1,2,4} 4.32x 10 -7 4.07x 10 .7 
{1,2, 5} 6.46 x 10 -7 6.11 × 10 -7 
{1,2,6} 1.31 x 10 -6 1.23 × 10 -6 
{1,2,7} 2.96 x 10 -6 2.78 x 10 -6 
{1, 3, 5} 1.84 x 10 -6 1.60 x 10 -6 
{1, 3, 6) 2.24 x 10 -6 2.00 x 10 -6  
{ 1, 3, 7} 1.58 × 10-  s 139 x 10- 6 

Four-particle systems; ground state: { 1,2, 3, 4} 
{1,2,3, 5} 3.56 x 10 -7 3.44 x 10 -7  
{1,2,3,6} 4 .90x 10 -7 4.74x 10 -7 
{1,2,3,10} 1.95 x 10 -6 1.88 x 10 -~ 
{1,2,4, 5} 5.47 x 10 -7 5.13 × 10 -6 
{1,2,4,6} 5.47x 10 .7  5.20x 10 .6  
{1,2,4, 10} 1.40x 10 -6 1.34x 10 -6 
{1,2,5,6} 8.20x 10 -7 7.69 x 10 -7 
{1,2,5,10} 1.51 × 10 -6  1.43 × 10 - 6  

{1,2,6,7} 1.51 x 10 -6 1.41 x 10 -6  
{1,2,6, 10} 1.98 x 10 -6  1.88 x 10 -6 
{1,2,7,8} 3.07x 10 .6  2.86x 10 -6  
{1, 2, 7, I0} 2.37 x 10 -6  2.24 x 10 -6  
{1,3,4,6} 9.51 x 10 -6 8.05x 10 -6  
{1,3,4,8} 1.80 x 10 - s  1.60x 10 -5 
{1, 3, 5, 7} 2.15 x 10 -6 L92 × 10 -6 
{1,3, 5,9} 4.53 x 10 -6 4.09 x 10 -6 
{1,3,7,9} 2.25x 10 - s  2.01 × 10 - s  
{ 1,3, 7, 10} 2.82 x 10- 5 2.54 x 10- 5 

e.s. means  the excited state; L~ is for a Coulomb-corre-  
lated system, L¢~ is for a Coulomb-and-core  correlated 
system; see Sect. 6. The ground  state is {1, 2}, {1, 2, 3} 
and {t, 2, 3, 4), respectively, for 2-, 3- and 4-particle 
system. Numbers  in the curly brackets label the occupied 
orbitals 

S. Olszewski et al. 

c o u n t e r p a r t s .  I n  t h e  c a s e  o f  o u r  o n e - d i m e n s i o n a l  g a s  w e  c a n  o v e c o m e  t h i s  d i f f i c u l t y  

b y  c a l c u l a t i n g  

× ~ ~-~ ( g  2 - M 2) IM) 
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+  ZZZ F(a  ez Idc)] 
b ~ a L \  I 12 \ Ir12 

[ h erc 2 7 -I 
X ~ - i - ~  b2 C2 Ll2m~ L (a2 + -- -- dz)j lc, d> 

=-IN> + ~ C(~)(N)IM> 4- ~ C(C'd~(N)lc, d> 
fM> I~, d> 

(62) 

which is the correlated ground-state; a, c = t, 2, . . . ,  N; c -~ a in the first sum while 
IM) are the antisymmetrized one-electron excited (a~M)  wave functions, 
M = N + 1; N + 2, . . . .  In the second sum Ic, d) are the antisymmetrized two- 
electron-excited wave functions obtained by promoting two electrons from levels 
a, b to levels c, d, correspondingly; a, b = 1, 2, . . . ,  N, a ~ b and c, d = N + 1, 
N + 2, . . . ,  c # d. In a similar way we have 

I(N + A) ̀°rr) ~ IN 4- A) + ~C(~(N + A)IM) 4- ~ C(C'a~(N + A)[c, d) (63) 
M Ic,d> 

which is the excited Coulomb correlated state. The coefficients C(U)(N + A) in the 
first sum in Eq. (63) are those given in Eq. (62) on condition that N is re- 
placed by N + A  and a , c = l , 2  . . . .  , N - 1 ,  N + A , c ~ a  and M = N ,  
N + 1, . . . ,  M # N + A; also Ce'a)(N + A) in the second sum in Eq. (63) are those 
given in Eq. (62) on condition that a , b = l ,  2, . . . , N - - 1 ,  N + A , a # b  and 
c , d = N , N +  l, . . . , c , d # N + A , c # d .  

In the correlated case we calculate F similarly as in Eq. (61): 

4 .... 3 e2 ](  A)eor,[ =~1 II  2 F='~(O)N+A,N) ~ ( N +  zi nc°** . (64) 
i 

Both the wave functions IN c°r~) and IN 4- A .... ) are expressed in Eq. (62) and (63), 
correspondingly, in the form of linear combinations of Slater determinants tP). 

c o r r  N When calculating (N + A ly, i=lzilN ~°~) we take into account that the matrix 
element ( P ' I ~ =  ~zilP) of the single-particle operator z = y~= lzi between a Slater 
determinant [P) entering Eq. (62) and another Slater determinant [P') present in 
Eq. (63) can be non-zero only if IP) and IP') are identical or if tP) differs from [P') 
in the occupation of only one level. In the latter case we obtain 

zi P = (q~dzlq~j), (65) 

where the different one-electron orbital is q~j for [P) and 91 for [P'). Thus, in the 
zeroth order, i.e. for the uncorrelated wave functions IN), IN + A), we obtain the 
term (q~n+A[Z[~0n) present in Eq. (61). For the correlated wave functions IN .... ), 
! N + A .... ) this term is amended by other terms coming from the correlation parts 
of IN ¢°~) and IN + A .... ) present in Eqs. (62) and (63). 

An interesting point here is a comparison of the transition probabilities be- 
tween the uncorrelated, viz., one-electron ground and excited states, on the one 
hand, and transition probabilities between the correlated two-electron ground and 
excited states representing an electron pair, on the other hand. 
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For  the uncorrelated wave functions only some special transitions between the 
one-electron states do not vanish. Let us take, for example, a two-particle system 
occupying, respectively, two levels a, b and two levels c, d. For the states {a, b} and 
{c, d}, represented by the Coulomb uncorrelated wave functions ~bc°){a, b} and 
¢(o) {c, d} [cf. Eq. (47a)], the dipole matrix element between these wave functions 
has the property 

(~/,(°){a, b}lz, + zzl¢(°){c, d}) :~ 0 (66) 

only in case when at least one of the relations 

a = c ,  a = d ,  b = c ,  b = d  (67) 

is satisfied; see Eq. (70) below. Otherwise a vanishing transition probability be- 
tween the states {a, b} and {c, d} of the particle pair is obtained. On the other hand, 
the Coulomb correlated wave functions ¢{a, b} and ~,{c, d} can combine, in 
principle, into a non-zero matrix element 

(¢{a,  b}[z, + z21¢{c, d}> (68) 

for any a, b, c and d. In our opinion this property has not been yet examined 
thoroughly enough even for so simple and well-known two-electron systems as 
the He atom, or the H2 molecule, where the probabilities for only one-electron 
transitions have been examined [107, 119-122]. The reason for that can be ascribed 
to a complicated calculation connected with the correlated wave functions of any 
two-electron (and more than two-electron) excited state. 

Let us assume in our model that the electron pair is first on the levels A, B and 
next the same pair is promoted to the levels C, D, where A ¢ B ~ C ¢ D. In case 
when the Coulomb correlations between electrons in the pair are taken into 
account, we find that the matrix element for a dipole transition between the 
two-electron state ¢{A, B} to a similar state ~k{C, D} is equal to the term 

~_,~"~'~, C(a'b)(A, B) C(c'a)(C, D)(~°){a, b}lzl + Zzj~(°){c, d}); (69) 
a b c d 

the sums run over all possible a :~ b and all possible c :~ d. In Eq. (69), we have 

<~p(°'{a, b}lz~ + z2ltP(°){c, d}> 

= 6ba<a[zlc> + ,5,,~<blzld> - 6bc<alzld> -- 6,,a<blzlc>. (70) 

In fact, because of correlations, C("'b)(A, B), C(C'd)(C, D) are usually non-zero for 
any pair of levels a, b and c, d and this provides us, together with Eq. (70) with the 
non-vanishing result for Eq. (69). In effect, we can calculate the reciprocal lifetime 
F of a correlated excited state having the non-vanishing dipole transition to the 
correlated ground state from the formula (64). 

In Table 5 we present dipole moments calculated for several sets of states with 
the aid of the correlated and uncorrelated wave functions for 2-particle and 
5-particle systems; different box length L is taken into account. Table 6 represents 
the reciprocal lifetimes F for the excited states of these systems calculated with the 
aid of Eq. (61) or Eq. (64), in dependence on the approximations applied for the 
wave functions and their energies. 
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T a b l e  5. Dipole moments (in 10-z m) for two-particle and five-particle 
systems calculated with the aid of the Coulomb uncorrelated and 
Coulomb correlated wave functions for different L given in 10-~o m 

State L = 1 L = 10 

Two-particle systems 
{1, 3} - 2.07 x 10 '-9 -- 1.98 x 10 -8 

- -  1 . 9 5  x I 0  - 9  - -  1 . 9 5  x 1 0  - s  

{2, 6} -- 353 x 10 -11 1.61 × 10 -9  
- 3.97x 10 - l l  - 3.97x 10 - l °  

{5, 7} 1.23 x 10 -13 - 8.87 x 10 -1° 
0.00 0.00 

Five-particle system 
{1, 2, 3, 4, 6} -- 2.22 x 10 -9 - 2.88 x 10 - s  

- -  2 . 0 1  x 1 0  - 9  - -  2 . 0 1  x 1 0  - 8  

{1,2,3,4,  15} 0.00 0.00 
0.00 0.00 

{1, 2, 3, 4, 20} -- 6.30 x 10 -12 -- 6.91 x 10 -11 
- 5.76x 10 -~2 - 5.76x 10 -11 

For  two-particle systems the moments are between the ground state 
{1, 2} and that indicated in the table; for five-particle systems the 
moments are between the ground state { 1, 2, 3, 4, 5} and that indicated 
in the table. Numbers  in the curly brackets label the occupied orbitals. 
Upper  row for each state: correlated dipole moments; lower row - 
uncorrelated dipole moments. The dipole moments for transitions of 
two-particle system from the following low-lying excited states not 
indicated in the table, viz, {1, 4}, {1, 6}, {2, 3}, {2, 5}, {3, 4}, {3, 6}, 
{4, 5}, {5, 6}, to the ground state {1, 2}, are equal to zero in the corre- 
lated and uncorrelated approximation for the wave functions 

8 Two-photon emission and the lifetime of the uncorrelated and correlated 
excited states in ease of forbidden dipole transitions 

When a dipole transition between two states of a two-particle system, say {a, c} and 
{a, b}, is forbidden (a, b, c represent the occupied levels in each case), viz. 

({a, c}[zl + Zzl{a, b}) = 0, (71) 

there is a possibility of a two-photon transition between {a, c} and {a, b} via an 
intermediate state { f, 9} 1-123-129-1. Let us assume, for example, that 

E~a.¢~ > E~a,b~. (72) 

Then a particle promoted into some state { f  9} for which 

E~rg~ > Efa.c~ (73) 

and 

({a, c}lzl + z21{f, o (74) 
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Table 6. Reciprocal lifetime F (in s- 1) of excited states of 
two-particle and five-particle systems having different L cal- 
culated for the spontaneous dipole transitions; Eqs. (61) and 
(64) 

State L =  1 L = 1 0  

Two-particle systems 
{1,3} 

{2,6} 

{5, 7} 

Five-particle systems 
{1,2,3,4,6} 

{1,2,3,4,15} 

{1,2,3,4,20} 

1.26 x 1012 2.88 x 10 s 
1.12 x 10 lz 3.44 x 10 s 
9.55x 1011 9.55x 107 

1.15 x 1011 4.27 x l0 s 
1.45 x 1011 2.37 X 10 7 

1.36 x 1011 1.36 X 10 7 

1.03 x 107 7.23 x I0 s 
0.00 0.00 
0.00 0.00 

1.57 x 1013 5.74 x 10 9 

1.29 x 1013 4.39 X 10 9 

1.08 x 1013 1.08 X 10 9 

0.00 0.00 
0,00 0.00 
0.00 0.00 
4.38 x 1012 7.21 x l0 s 
3.54 x 1012 3.54 x l0 s 
3.67 x 1012 5.00 x 10 s 

The transitions are: (i) between an excited state {a, b} in- 
dicated in the table and state {1, 2} which is the ground state 
for 2-particle system, and (ii) an excited state {a, b, c, d, e} 
given in the table and state {I, 2, 3, 4, 5} which is the ground 
state for 5-particle system; numbers in the curly brackets 
label the occupied orbitals; L are given in 10- l °m units. 
Upper row: reciprocal lifetime for transitions between the 
Coulomb correlated states; middle row: reciprocal lifetime 
for transitions between the Coulomb uncorrelated (Har- 
tree-Fock) states; lower row: reciprocal lifetime for 
transitions between Coulomb uncorrelated states calculated 
in zero-order approximation for energy. (The change of sign 
obtained for transitions between correlated states is the effect 
of reversal of the energy levels sequence due to correlations; 
see Sect. 6.) 

can  be  t r ans f e r r ed  to  the  level  {a, b} on  c o n d i t i o n  t h a t  

( { f  9}fzl + z21{a, b}) ¢ O. (74a) 

In  th is  case  we  h a v e  a t w o - p h o t o n  t r a n s i t i o n  b e t w e e n  {a, e} a n d  {a, b}. H e r e  {a, c} 
a n d  {a, b} can  r e p r e s e n t  e i the r  t he  Pau l i  c o r r e l a t e d  ( C o u l o m b  uncor re l a t ed ) ,  of  t he  
C o u l o m b  c o r r e l a t e d  w a v e  func t ions .  
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The probability per second for the simultaneous emission of two photons with 
one photon in the frequency range dr' is [124] 

1024x6e4v,3v ,,3 
A dr' = dr' 

h Z c  6 

x I ~ ({a, c}[zl + z2[{f, g}>({ f  g}lzl + z21{a, b}> 
b { f  , g} 

x + v" + v' " (75) 
]){f, y} {a, c} V{f, fir} {a, c} "~ 

The frequency v" is that of the second photon emitted simultaneously with the 
photon having frequency v'. In our calculations we limit, on the first step, the sum 
over {f, g} to a single intermediate state in each case, on the next step we perform 
a sum over { f g}. The principle of the conservation of energy requires that 

E{a,c}  - -  E{,,,t,} 
v' + v" = , (76) v{a, c} (a, b} h 

whereas 

E { f , g }  - -  E{~,~} 
v{ f ,  g) {~, ~} = (77) 

h 

The formula (75) can be used for the probability of simultaneous emission of a pair 
of photons with no distinction concerning the order of emission. The total prob- 
ability of emission equal to the reciprocal value of the lifetime of the higher level is 
thus [124] 

w = ~ dr'. (78) 
do 

In Table 7 we present the reciprocal lifetime for a set of states having forbidden 
dipole transitions but the transitions between the states can be effectuated via 
two-photon transitions. The calculations are done for L = 10 -9 m, an increase of 
L leads to a strong decrease of the reciprocal lifetime w for a two-photon transition 
between given states. 

9 Average velocity of an uncorrelated and correlated pair of free particles 

In the low-temperature physics we examine the problem of the coherence length 
4o in a many-electron system which can be defined as the ratio between the electron 
velocity vv at the Fermi level and the size Eg of the energy gap of a metallic 
superconductor [130]: 

~o = vv/nEg. (79) 

Our point is that vv should evidently depend on the Coulomb correlations in the 
system and we examine this correlation effect on the particle velocity in our model. 
For  a one-dimensional two-particle system the velocity operator is 

= + . ( 8 o )  
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Table 7. Correlation influence on probability w of two-photon transition from state {c, d} to state {a, b} in 
case of a forbidden dipole transition between these states; see Sect. 8 

Intermediate AE {°) w t°) A E  (HF) w (HF) A E  (nFe°rr) W {HFe°rr) 

state 

Forbidden dipole transition {1, 4} -+ {1, 2} 
{2,4} 1.13 4.88 x 10 -2 5.59 x 10 -1 5.16x 10 -~ 8.57x 10 -1 5.49 x 10 
{1,5} 3.38 3.26x 10 -~ 4.00 2.39x 10 -1 4.13 1.44x 10 -1 
{1,7} 1.24x 10 4.71 x 10 -6 1.40 x 10 4.07 x 10 - s  6.72 1.20x 10 -2 
{1,9} 2.44x 10 3.00x 10 -8 2.68 x 10 2.83 x 10 -7 9.89 6.12x 10 -a  
{1, 11} 3.95 x 10 7.54x 10 -1° 4.24x 10 7.51 x 10 -9 1.39 x 10 3.58 x 10 -3  

1.63 x 10 -1 1.47 6.45 x t0 

Forbidden dipole transition {2, 3} ~ {1, 2} 
{2, 4} 2.63 ZI3  x 10 -3 3.43 4.36 x 10 -3  3.05 8.31 x 10-1 
{2, 6} 1.02 x 10 2.02 x 10 .7 1.23 x 10 4.51 x 10 -7 6.50 8.90 x 10- s 
{2,8} 2.07 x 10 9.71 x 10 -~° 2.37 x 10 2.40x 10 -9 8.92 5.56x 10 -a  
{2, 10} 3.42 x 10 2.00 x 10-11 3.79 x 10 5.27 x 10-11 1.21 x 10 1.45 x 10- 5 
{2,12} 5.08 x 19 9.I9 x 10 - .3  5.50 x 10 2.53 x 10 - Ia  1.61 x 10 4.55 x 10 -5 

2.18 x 10 -a 4.45 x 10 -3 7.21 x 10 -1 

Forbidden dipole transition {3, 4} --* {1, 2} 
{1, 5} - -  0 - -  0 1.27 1.67 X 10 - 2  

{3, 5} - -  0 - -  0 3.68 5.28 
{2, 6} - -  0 - -  0 6.85 6.61 x 10 -a  
{4, 6} - -  0 - -  0 1.09 x 10 2.88 x 10-* 
{1,7} - -  0 - -  0 1.17x 10 4.68 x 10 -5 

0 0 8.26 

First column: symbol of the intermediate state {e,f} .  Next columns: energy difference AE between states 
{e , f }  and {e, d} (in eV) and the reciprocal lifetime w (in s -a) calculated for different approximations 
(zero-order, Hartree-Fock,  and Hartree-Fock with the second-order perturbation correction for energy 
and obtained with the aid of the Coulomb-correlated wave functions). In case (iii) also two-photon 
transitions are forbidden for the uncorrelated (zero-order and Hartree-Fock) wave functions; L = 10 .9  m. 
The bot tom numbers for w represent results when the sum over the intermediate states {f, .q} is taken into 
account in (75) 

T h e  a v e r a g e  o f  t~pair c a l c u l a t e d  o v e r  a n y  w a v e  f u n c t i o n  v a n i s h e s  b e c a u s e  o f  t h e  
s t a n d i n g - l i k e  c h a r a c t e r  t o  t h e  w a v e  f u n c t i o n s  i n  o u r  m o d e l ,  n e v e r t h e l e s s  w e  c a n  

e x a m i n e  t h e  a v e r a g e  v a l u e  o f  

2 h2 ( 02 02 02 ) 
pair = ..-77.2 7_2 + - -  + 2 0 Z - - ~ 2  J ' me \OZ~ OZ~ 

(81) 

F o r  t h e  c a s e  o f  a n  u n c o r r e l a t e d  w a v e  f u n c t i o n  t h e  a v e r a g e  o f  t h e  l a s t  o p e r a t o r  t e r m  
e n t e r i n g  E q .  (81) v a n i s h e s  l e a d i n g  t o  a w e l l - k n o w n  r e s u l t  p r o p o r t i o n a l  t o  t h e  
k i n e t i c  e n e r g y  o f  t h e  s y s t e m  e q u a l  t o  a s u m  o f  k i n e t i c  e n e r g i e s  o f  i n d i v i d u a l  

p a r t i c l e s ,  viz . ,  

gm ( pair> = 2me z = Eki.. (82) 
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Fig. 10. The difference (in meV) between the Cou lomb  correlated and C o u l o m b  uncorrelated kinetic 
energy, viz. ,~in~c°" _ ,~e(°), ,~,,-r. 2-particle system as a function of the system excitations. System states are 
represented by {m, n} where m, n label the occupied levels. Circles: m = 1, n = 2, 3, 4, 5, 6, 7; triangles: 
m = 2; n = 3, 4, 5, 6, 7; squares: m = 3, n = 4, 5, 6, 7. L = 10 -7 m 

In case of the uncorrelated wave function the average in Eq. (82) gives E (°), which is 
the kinetic energy of the uncorrelated two-particle system. 

In Fig. 10 we plot the difference of the average of Eq. (82) calculated for the 
Coulomb correlated ~p{m, n} and the Coulomb uncorrelated (Pauli correlated) 
~(°){m, n}, respectively, for different m and n. 

Two points are still of interest. The first concerns the behavior of the average of 
the operator (81) as a function of L for a given state of the particle pair calculated in 
the case of: (i) the correlated wave function, and (ii) the uncorrelated wave function 
of the pair. In case (ii) this average is reduced to that obtained for the operator 
entering Eq. (82), 

2E (o) 
( ~ . i , )  = - -  (82a) 

Ft/e 

The averages of Eq. (81) decrease monotonically with the increase of L, nevertheless 
their ratio 

( ~k {m, n} iv'Z.ir I O {m, n} )/(4, (°) {m, n} 16Z, lr I~ (°) {m, n} ) (83) 

exhibits an evident maximum for a high-excited state; see Fig. 11. These 
maxima calculated for the states ~,{1,2}, ~p{1, 3} and ~{1,4} are attained at 
L not far from Lc characteristic for the metal-insulator transition of a two-particle 
system; see Sect. 6. Another point of interest is the examination of the difference 
of the averages represented by the Coulomb correlated average of Eq. (81) 
and the average given in Eq. (82a) for different excitations of the particle 
pair; see Fig. 12. Expressions (81) and (82a) taken separately increase mono- 
tonically with the excitation index of the state, but their difference exhibits 
oscillations; Fig. 12. Maxima similar to those shown in Fig. 12 can be ob- 
served also for the ratio (83) when it is plotted for some constant m > 1 and 
increasing n. 
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Fig. 11. The ratio of the average square of the Coulomb correlated and Coulomb uncorrelated velocity 
represented in Eq. (83) and calculated as a function of L (in 10- ~o m) for different states of a two-particle 
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Fig. 12. The difference in the average square of the Coulomb correlated and Coulomb uncorrelated 
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m =  3, n = 4 , 5 , 6 , 7 ,  L =  10-Tin 

I0 Survey 

A well-known one-dimensional problem of interacting electric charges moving in 
a very thin potential tube has been approached on the basis of a standard 
quantum-mechanical perturbation theory. The charged particles are assumed to be 
electrons which may occupy, however, only singly their one-particle quantum 
levels. A full convergence of the perturbation calculation performed for 
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the Coulomb operator  is then attained because the terms which depend on 
the cross-section radius R of the potential box can be easily separated from the per- 
turbation terms independent of R on condition that  R is taken sufficiently small. 
The R-dependent terms cancel in the calculation of the excitation energies. 

The numerical calculations are done to the second-order approximation for 
energy which is assumed to give an important  contribution to the correlation 
energy; nevertheless high-order terms have been also included in order to compare  
the accuracy of the Rayleigh-Schr6dinger perturbation energies with similar ener- 
gies obtained using shifted-energy denominators.  

The applications of the theory were focussed on four kinds of problems. The 
first concerned the excitation energies of the model particles and their dependence 
on the potential box length L. Here we examined the L for which the zero-order 
excitation spectrum characteristic for a one-dimensional metal can be changed into 
a spectrum characteristic for a bound, or insulating, few-electron system. 

In the second step, we examined the effect of the Coulomb repulsion on the 
charge distribution in small systems. Here the influence of the particle excitations 
done in the upper levels on the charge distribution obtained in the bot tom levels can 
be also examined. The patterns of the correlated and uncorrelated charge density of 
a two-particle system being in different energy states are thoroughly compared. 

The third kind of problems concerned the calculation of electric dipole mo-  
ments and their application to transition probabilities between different states. 
Some transitions which are forbidden for the states represented with the aid of the 
uncorrelated wave functions become allowed in the case when the Coulomb-  
correlated wave functions are used in calculations. Also probabilities obtained for 
two-photon transitions between the states are compared for different approxima-  
tions applied in the perturbation theory. 

The problems of the fourth kind concerned the velocity square of a correlated 
two-particle system. In the case of an uncorrelated system its velocity square 
becomes equivalent, with the accuracy to a constant factor, to the kinetic energy of 
that  system. This situation is changed, however, when the correlated wave func- 
tions are taken into account and our purpose was to examine the changes in the 
velocity behavior due to correlations. 

All calculations were done on the basis of the fundamental constants e, me, h 
characterizing the electron particles and their levels together with the length L of 
the one-dimensional potential box as the only variable parameter  in the model. 
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